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Abstract

This paper is intended to be pedagogical rather than a presentation of original research.

We describe a simple dynamic, stochastic general equilibrium (DSGE) model with capital

utilization, capital adjustment costs, and a simple Cobb-Douglas technology to illustrate

how DSGE models can be used to explain the past and to forecast the future. We identify

one method to directly estimate latent variables and parameters in a DSGE model. We

then construct estimates of the latent variables and shocks, the latter of which drive

observed variations in economic activity. Those latent variables form the foundation of

our economic analyses of past events, and the estimated parameters allow us to construct

an economic forecast.



1 Introduction

In the past decade, advances in economic modeling—including the application of direct

estimation of these models—have resulted in models that can generate results that often

closely match real-world dynamics. The latest generation of models can be used to an-

alyze historical economic events, current economic conditions, and hypothetical changes

in policy.

In this paper, we discuss one method of directly estimating a class of dynamic stochas-

tic general equilibrium (DSGE) macroeconomic models. The purpose of the exercise is

not to develop new research, but rather to demonstrate the capacity for the approach to

be used in the service of the analysis produced by the Congressional Budget Office (CBO).

The particular method is of interest because DSGE modeling is fairly straightforward and

flexible, and it does not require extensive computing power. DSGE models bring together

advances in computational economics and time series econometrics to produce estimates

of structural parameters, latent variables, and economic shocks that generate economic

fluctuations. The analytical process has been applied to real business cycle (RBC) models

by Alejandro, Primiceri, and Tambalotti (2007) and by Justiniano and Primiceri (2008).

The paper begins by outlining a model, taking the first-order necessary conditions

(FONCs) and resource constraints that describe the solution to the model and linearizing

them. Using a method described by Sims (2002) for solving rational expectations mod-

els, we reorganize the linear system of equations. What results is a simple, step-ahead

transition matrix that approximately describes the expected evolution of the economy,

conditioned on some preexisting state.

The solution formulated by Sims (2002) fits the form of the state equation of the

Kalman filter. Using the data in the observation equation of the Kalman filter allows us

to generate estimates of the model’s latent variables and a log-likelihood based on that
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particular parametrization. After applying prior distributions on those parameters, some

of which could be degenerate distributions for those parameters that we want to calibrate

directly, we maximize the resulting posterior likelihood over the space of structural pa-

rameters that govern the behavior of the agents in the model. The relative simplicity of

the Kalman filter allows us to compute the estimate fairly quickly. For the simple example

we use, the solution is found within a few minutes.

The approach we describe here offers several advantages. First, the system is internally

consistent. Historical fluctuations can be decomposed into shocks whose interpretations

are precise and mutually exclusive. Second, we can use the model for forecasting. Several

attempts have been made, and a few, such as that of Edge, Kiley, and Laforte (2009),

have claimed success using DSGE modeling although much work remains in assessing the

models’ abilities to forecast economic conditions. Third, DSGE models allow analysts to

run experiments to test the effects of policy changes. The models permit a good deal of

flexibility in setting up experiments and creating scenarios.

Gathering worthwhile information from DSGE models is predicated on having a spec-

ification that represents a reasonable approximation of the economy. Research is adding

to the list of reasonable features that characterize DSGE models, many of which rely on

microfoundations for support. Although the DSGE model we present is simple, there

are variations that include working capital for firms, rigid prices and wages, and other

frictions that help explain observable economic dynamics.

In the second section of this paper, we describe an algorithm for estimating a generic

model. We review the steps of linearizing, transforming, and estimating the model. In the

third section, we present a simple model to which we apply the process. The fourth section

details estimates of the model’s parameters. The fifth section gives a simple forecast that

can be generated from the DSGE model and describes other policy-related applications.

The sixth section is the conclusion. The appendix consists of several figures and a table.
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2 The Algorithm

2.1 The Model

The solution to the model is characterized by a number of FONCs, market-clearing con-

ditions, laws of motion, and other relationships. Equation 1 defines the vector of relation-

ships:

Et[f(Xt; Ξ)] = 0 (1)

The term Ξ represents a vector of the structural parameters, and the term Et is the

expectations operator at time t. The steady-state solution to this problem is X̃, such

that Xt = X̃ solves Equation 1 at every time t.

2.2 Linearizing the Model

We log-linearize around the steady state X̃ and define the vector of functions such that

0 ≈ Et[f(X̃; Ξ)] + Et[
∂f(X̃; Ξ)

∂ lnX
x̂t] (2)

In this definition, x̂t is the vector of log-deviations from steady state. By explicit con-

struction, Et[f(X̃; Ξ)] = 0, that term drops out, and we are left with

0 ≈ Et[
∂f(X̃; Ξ)

∂ lnX
x̂t] (3)

The elements of the matrix ∂f(X̃;Ξ)
∂ lnX

are functions of the model’s steady-state values and

its structural parameters.
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2.3 Solving Linear Rational Expectations Models

We define yt: a vector of variables such that the union of the elements in yt and yt−1

is a superset of those that comprise x̂t. For example, assume a very simple model with

consumption and capital. Assume that the FONCs reduce to a system of n = 2 equations

populated by ct, kt, and kt+1. Therefore

x̂t =


ĉt

k̂t

k̂t+1

 (4)

A suitable candidate for yt is

yt =

 ĉt+1

k̂t+1

 (5)

Then we use the method detailed by Sims (2002) (from which the subsection title is

drawn). We rearrange Equation 3, using the newly defined yt, to get Equation 6:

Γ0yt = Γ1yt−1 + C + Ψzt + Πηt (6)

In this formulation, the n × n matrices Γ0 and Γ1 are constructed from the elements of

∂f(X̃;Ξ)
∂ lnX

. The term C is any remaining constant term, typically 0. The random shock,

zt, impacts the system by the impact term Ψ. ηt represents an expectational error. For

example, a model with habit persistence will have ct+1. At time t, ct+1 is not known with

certainty, so we must include an expectational error.

Typically, Γ0 is a singular matrix, so we apply the Sims (2002) algorithm to get

Equation 7:
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yt = Gyt−1 + C1 + ∆zt (7)

in which G is an n × n matrix and ∆ is the impact of an independent and identically

distributed (i.i.d.) shock zt. (Equation 7 is more complicated for the case in which the

shock is serially correlated). In examples in which we formulate yt to be a vector of

deviations from steady-state values, C1 is necessarily equal to 0. In cases in which yt may

include another term, such as a scale factor, C1 may take some nonzero value.

2.4 Using the Kalman Filter

The Kalman filter is characterized by two equations, a state equation and an observation

equation:

yt+1 = Gyt + C1 + vt+1 (8)

yt = A′ot +H ′yt + wt (9)

In these equations, ot is an exogenous or predetermined term—in this case, it will typically

be a constant. The values that comprise yt are the actual measured components of yt for

which there are data (real national accounts data, prices, wages). The error terms are i.i.d.

and have the property that E[vtv
′
t] = Q. wt is assumed to be 0, which means that there

is no measurement error. Equation 8 is the same as Equation 7. The Q in E[vtv
′
t] = Q

is going to be a function of ∆ and any structural parameters Ξ that define the relevant

moments of zt.

G and yt in Equations 8 and 9 were deliberately chosen because they represent the

same variables in Equation 7. By carefully constructing A′, ot, and H ′, we explicitly relate

the data to the states in the Kalman filter, which are the model variables’ log-deviations
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from their steady states.

There also can be elements of yt, such as preference shocks or total factor productivity

(TFP), that are not directly observable; the Kalman filter provides estimates for those

unobservable values. Finally, the Kalman filter produces a log-likelihood that is a function

of the data yt conditioned on the parameter set Ξ.

2.5 Estimating the Model

We are interested in maximizing P (Ξ, yt). We begin by rewriting the probability using

Bayes’ theorem:

P (Ξ, yt) = P (yt|Ξ)P (Ξ). (10)

The Kalman filter produces P (yt|Ξ); it gives us the likelihood conditioned on the set of

parameters used to define the problem. P (Ξ) represents our prior beliefs about the values

of the structural parameters—important because some have important restrictions.

We maximize the likelihood P (Ξ, yt) over the parameter space Ξ by computing those

two components on the right side of Equation 10.

3 The Model

The model we present is a simple version of a model described by Christiano, Eichenbaum,

and Evans (2005). We remove money from the economy and, by extension, price and wage

stickiness, but we include most other important details. We borrow some elements from

Alejandro, Primiceri, and Tambalotti (2007), whose work is similarly based on this class

of models. A representative household provides labor and capital to the market, taking

a wage and rental rate as given. The household chooses investment, consumption, and a

utilization rate subject to the typical budget constraint. In addition, the household pays

6



a capital adjustment cost for investments that deviate from its investment in the last

period and a capital utilization cost in periods in which capital is more highly utilized.

3.1 The Household

A representative household’s problem is

max
{ct,ht,ut,kt+1,it}

E0

∞∑
t=0

βtξbt

(
log(ct − θct−1)− ξht φ

h1+σ
t

1 + σ

)
(11)

In this model, c is consumption, h is labor effort, u is capital utilization, and i is in-

vestment. Consumption and investment, c and i, are scaled variables; actual consumption

and investment are multiplied by a subsequently defined scale factor Xt. The household’s

utility function embodies habit formation; the household utility is a function of con-

sumption’s deviation from a fraction θ of the household’s consumption in the last period.

Furthermore, the disutility of labor is separable from consumption. The disutility of labor

varies each period, modified by ξht , subject to the following law of motion:

ξht = (ξht−1)ρhεht (12)

The term log(εht ) is an i.i.d. term distributed normally with zero mean and variance

σ2
h. Similarly, there is variation in the household time value of money β, captured by ξbt ,

which is subject to

ξbt = (ξbt−1)ρbεbt (13)

where log(εbt) term is an i.i.d. term that is distributed normally with zero mean and

variance σ2
b .
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The household’s budget is described by two equations, the resource constraint

ct + it = rtutkt + wtht (14)

and the law of motion for capital

γkt+1 = (1− δ)kt + a(ut)kt + s(
it
it−1

)it (15)

in which a(.) is the cost for capital utilization, s(.) represents the capital adjustment costs,

and γ is the rate of population growth.

The functional form of the capital utilization costs is not explicitly formulated, but it is

defined by the following features: Capital utilization costs a(.) are defined by a curvature

parameter χ. In steady state, u is normalized to 1, a(1) = 0, and a′′(1)
a′(1)

= χ. The capital

adjustment cost function s(.) is subject to three conditions. First, s(ω) = 1, where ω is

the rate of steady state growth, so that no costs are absorbed by the household along the

steady-state-growth path. Second, we impose the condition that s′′(ω) = ν > 0, so that

the cost function is along the steady-state-growth path. Third, we set s′(ω) = 0.

3.2 The Firm

The representative firm has access to a simple Cobb-Douglas technology. The firm rents

capital at rate r and uses it at utilization rate u. Labor is hired at wage rate w and profits

are maximized by solving the following problem:

max
{ht,kt}

ztX
α
t (ktut)

1−αhαt − wtht − rtktut (16)

The z term is a stationary AR(1) component of TFP. X is the trend component. The

trend component of TFP grows at a constant rate:
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Xt = ωXt−1 (17)

The law of motion for the z term is represented by

zt = (zt−1)ρzεzt (18)

The term log(εzt ) term is an i.i.d. term that is distributed normally with zero mean

and variance σ2
z .

4 Estimates

To estimate the model, we use as many data series as there are shocks to the system.

We use data on inflation-adjusted consumption and investment and average hours in

manufacturing, all seasonally adjusted. We present the values of those series in Figure 1.

The investment and consumption series are displayed in logs. The shaded vertical bars

extend from the peak to the trough of each recession.

We assume that there are six latent variables: capital utilization, capital stock, the

inflation-adjusted interest rate, the adjustment to the rate of time preference, the adjust-

ment to the disutility of labor, and TFP. The last three of those series are subject to

exogenous shocks. Although there are data on some series, such as utilization, we are ef-

fectively using the model to derive alternative or competing estimates for those variables.

It is unlikely that our estimates are legitimate competition for the published estimates of

the series because the model is simplified for the purpose of illustration.

For the structural parameters, we estimate a subset and calibrate the rest. The cal-

ibrated subset includes the time value of money, β = 0.99, and the population growth
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factor, γ = 1.004. The remaining subset includes the parameters that define capital

adjustment and utilization costs, all elasticities, persistence of the three shocks, the de-

preciation rate, the habit formation parameter, and the labor share of income.

For each parameter, we establish a set of loose, or unrestrictive, priors, the means

for which are based roughly on calibrations that are used in the previously cited studies,

such as Justiniano and Primiceri (2008). We use beta distributions for the bounded

parameters. For some of the other parameters, particularly a subset with a bound only

on one side, we use an inverse gamma prior. For the other parameters, we employ a normal

distribution. The formulation of the priors and their moments is described in Table 1.

We maximize the posterior likelihood to obtain point estimates of the parameters and

employ the Metropolis-Hastings algorithm to simulate the posterior densities for all of the

estimates. In Table 1, we report estimates of key moments of the posterior distribution.

Most parameters do not wander too far from their prior means. The income share to

labor drifts away to 0.57. The capital adjustment cost parameter is estimated at 0.153,

which is even smaller than the low calibrated value used by Christiano, Eichenbaum,

and Evans (2005). Habit formation comes in at 0.315, suggesting that habit is still an

important part of the model. The elasticity of labor parameter, at 5.49, is much higher

than the typical values of 1 or 2. All shocks show a good deal of persistence, ranging from

0.9 to 0.95 for each of the three autoregressive processes.

Figure 2 shows three latent variables: multipliers to the disutility of work, TFP, and

the discount rate. The values are presented as log deviations from the steady state. The

top panel represents estimated changes to the time value of money over the course of

the sample. The middle panel represents the same values but for the multiplier that

determines the disutility of labor. Finally, deviations in TFP are presented in the bottom

panel.

Declines in the discount rate are somewhat correlated with recessionary episodes. More
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strongly correlated are increases in the disutility of labor and declines in TFP, the latter

of which is particularly strong. In this simple model, the disutility of labor moves around

substantially, especially during recessions. Attributing declines in economic activity to a

change in preferences for labor effort is neither realistic nor satisfying. It is possible to

estimate how much of the total output variation is attributable to shocks to each variable,

although we do not perform that particular experiment. Because the system is linear, the

effects of the orthogonal shocks can be studied separately and then summed to derive the

overall response. Using such an approach allows us to decompose the effects of each shock

and determine whether relatively large changes in the parameter for disutility of labor

have any meaningful economic consequences.

Fortunately, studies of larger models, such as that by Alejandro, Primiceri, and Tam-

balotti (2007), do not attribute much of the economic variation to this particular shock.

In our simple model, we see large changes in that variable because there are few other

outlets to explain variations in economic activity.

In addition to providing estimates of unobserved variables, DSGE models can be used

to construct latent variables that inform policy. Those variables end up being functions of

variables explicitly modeled, estimated structural parameters, and observable data. One

simple example that we include is our estimate of the output gap. In this paper, the

output gap is a fairly straightforward concept. There exists in the model a unique steady-

state-growth path. An economy not subjected to any exogenous shocks and already in

a state along that path will continue in perpetuity. That growth path makes for an

excellent, if possibly unrealistic, baseline against which to judge the relative strength of

the economy. The output gap exists in this model simply as the observed deviations from

the estimated path of steady-state growth, which in this case is simply trend growth. We

present those series, plotted against the observed values and in log terms as appropriate,

in Figure 3.
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Figure 4 is a comparison our calculations based on the model with CBO’s estimates

of the output gap over the past several decades1. Figure 4 provides a competing estimate

and evaluation based on a structural model for a commonly used and referenced economic

indicator. There are many similarities between the two series, again because the model

simply measures deviations from an estimated growth trend.

More complicated models could have different views of the output gap: Edge, Kiley,

and Laforte (2008) and Justiniano and Primiceri (2008) construct several variations. Sim-

ply introducing a unit root shock to TFP confuses the definition of output gap. In this

case, there is no simple trend—the trend jumps in response toward unit root shocks to

TFP. Instead of using such a trend that shifts over time, we could define baseline economic

output as the results of a counterfactual scenario in which only the unit root TFP shock is

applied, irrespective of any other perturbations. Either approach would yield a plausible

estimate of the output gap. In addition to the output gap, the models we examine can

yield alternative estimates of the natural rate of unemployment, the size of the capital

stock, or any number of other variables of relevance to public policy.

Interpreting the past is only one use for DSGE models. In the next section, we explore

the use of models for economic forecasting.

5 Forecasts

In addition to investigating past economic conditions, the DSGE models can be used

for economic forecasting. We generate a forecast by applying Equation 7. At any time

t− 1, we take vector yt and multiply it repeatedly by the transition matrix G to generate

predictions for the T periods t+ 1, t+ 2, ..., t+ T . The resulting prediction assumes that

there are no further realized shocks.

1An explanation of how the output gap is estimated is available in Congressional Budget (2001).
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In Figure 5, we present our forecast compared with CBO’s January 2009 forecast.

Our model predicts a fairly sharp recovery starting at the end of the 2009, asymptotically

approaching the steady-state-growth rate. It predicts a higher economic output through

about 2013 than does the CBO’s baseline projection, which does not predict recovery in

earnest until 2011.

Although we present only a straightforward projection in Figure 5, the method allows

us to construct marginal distributions of the possible forecasts as well. By calibrating

the start of the experiment to current economic conditions, we can run a simulation to

generate a wide range of outcomes and to create quantile graphs.

Policy changes also can sometimes be included in the models. A richer model that

included a fiscal sector would allow us to include proposed changes in policy and then

to forecast the implications of those changes. Although the Aiyagari (1994) classes of

models, except that of Krussel and Smith (1998), generally do not incorporate aggregate

uncertainty because of computational limitations, the DSGE class of models is much more

flexible. Not only can such models accommodate changes in structural parameters that

represent regime movements such as policy changes, they can make forecasts without

regard to the current state of the economy.

6 Conclusion

We have described the method we use to directly estimate structural economic models.

After describing the algorithm for approximating and estimating the models, we apply

the algorithm to a very simple RBC model. Our model has a few frictions, such as capital

adjustment costs, capital utilization costs, and habit formation, and three stochastic

processes that drive the observed fluctuations. Shocks to the time value of money, the

disutility of labor, and TFP account for all of the variation observed in the data.
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With our DSGE model, we can estimate values of the latent variables (providing insight

into history), and we can make economic forecasts. In this paper, we show samples for

both exercises. Because the model desribed here is overly simple, there is little reason

to interpret the results as anything but a reduced-form representation for other shocks

and frictions that could be driving the observed fluctuations in the economy. Regardless

of one’s faith in the model’s specification, however, the exercise offers the opportunity to

tell a story that is internally consistent and that is informed by a wide range of economic

indicators.

We chose not to include a variety of frictions that could easily be added to the stock

model, although many of those features have been useful in a variety of applications.

Some are implemented in models in which there is a central bank that controls the money

supply. One possible constraint is a cash-in-advance borrowing constraint under which

agents must set aside money in advance to smooth the purchase of consumption and

investment goods. In such models, there is a technology associated with money that

determines the cost in terms of real resources of economic transactions.

Staggered price and wage setting as described by Calvo (1983) can add yet another

dimension of realism that allows models to capture the delayed response of inflation and

nominal wages to shocks to the monetary supply. In such models, firms are allowed to

reset their prices at intervals determined by a stochastic process. Although that is a poor

representation of price-setting behavior in high-inflation economies, as shown by Gagnon

(2007), it could be a useful reduced-form representation of the process for economies in

which inflation is more modest. Similarly, staggered wage setting, such as that detailed

by Erceg, Henderson, and Levin (2000), approximates nominal frictions in wage setting.

Alejandro, Primiceri, and Tambalotti (2007) detail sources of variation not covered

in this simple model. Their experiment includes shocks to monetary policy objectives,

price mark-ups (monopoly-pricing power), wage mark-ups (wage-setting power), the pro-
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ductivity of installing investment goods, and government spending. Any number of those

features can be added to the model to meet a variety of analytical demands.

The principle advantage of DSGE models is that they can be adapted to suit a wide

variety of applications. Whereas vector autoregression (VAR) models can be used for

forecasting and to describe past economic shocks, the VAR approach cannot be adapted

easily to policy analysis. A structural model, such as the DSGE model, can be used

to test policy experiments. Because all agents in the DSGE model make decisions, the

model can capture the endogenous effects of changes in policy in a way that a VAR model

cannot. Another advantage of a DSGE model comes from its transparency. Even when

the features of the model are reduced-form representations for more complex processes,

the DSGE model can provide a more precise insight about the nature of the shocks that

drive observed economic variations than alternative modeling strategies might be able to

provide.
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Figure 1: Estimated values of selected variables. Gray bars represent recessions from peak
to trough. Consumption and investment in log values.
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Figure 2: Estimated values of latent variables. Gray bars represent recessions from peak
to trough. Variables in log deviations from steady state.
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Figure 3: Estimated balanced growth path for observed variables. Variables in log values.
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Figure 4: Estimated log difference from steady-state-growth path.
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Figure 5: Forecast output gap.
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